
Advanced Programming

Inheritance (2)

Topics

• Multiple Inheritance

• Virtual Classes

• Virtual Functions

• Abstract Classes

• Static Variables

• Examples

Compatibility Between Base and
Derived Classes

• An object of a derived class can be
treated as an object of its base class.

• The reverse is not true.

Passing Derived Class Objects to
Functions

• In passing by value a local copy including the
base class part (static part) is passed to the
function

• In pass by reference the overridden functions
are passed

Multiple Inheritance

• Deriving directly from more than one class is
usually called multiple inheritance.

• The derived class will have the properties of
all base classes

Example

class Animal
{

};
class Graphics
{

};
class Snake: public Animal, public Graphics
{
}

Diamond Problem in Multiple
Inheritance

• If both of the base classes are derived from
the same parent class, then that parent class
is repeated in the newly derived class

• Example

 class B:public A

 class C:public A

 class D:public B, public C

Virtual Classes

• If a class is defined as virtual, it appears in the
derived classes only once.

• A virtual class must have:

– No constructor or

– Constructor with no parameters or,

– Constructor with parameters having default values

Example

class Port

{ -- };

class Region: virtual public Port

{ ---};

class Menu; virtual public port

{---};

class Window: public Region, public Menu

{----};

Virtual Functions

• A pointer to a derived class is type-compatible
with a pointer to its base class.

• However, only the members of the base class
can be accessed through a base-class type
pointer

Example

• Define a Polygon class and derive two classes
named Triangle and Rectangle. Define pointers
to Polygon. Create objects of type Triangle and
Rectangle. Call member functions.

Virtual Functions (cont.)

• If the base class has a virtual function the
derived classes can re-define it.

• The pointer to the base class will call the right
function.

• If the function is not defined as virtual using
the pointer to the base class, we always call
the base class version of the function

Example

• Modify the Polygon, Triangle, Rectangle
classes example. Add a virtual function and
call it using base class pointers.

Abstract Classes

• An abstract class is, conceptually, a class that
cannot be instantiated and is usually
implemented as a class that has one or more
pure virtual (abstract) functions.

• A pure virtual function is one which must be
overridden by any concrete derived class.

Example

class AB

{

 public:

 virtual void f() = 0;

};

Abstract Classes (cont.)

• Although we cannot instantiate from an
abstract class, it is possible to create pointers
to it.

• Abstract classes are also useful in defining
function parameters.

Static Variables

• When a member of a class is declared as static
it means no matter how many objects of the
class are created, there is only one copy of the
static member.

• Static variables are initialized out of the class.

Example

class Box
{
 public:
 static int objectCount;
 Box(double l=2.0, double b=2.0, double h=2.0);
 double Volume() { return length * breadth * height; }

private:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
};

Box:: Box(double l, double b, double h)

{

 length = l;

 breadth = b;

 height = h; // Increase every time object is
created objectCount++;

}

 int Box::objectCount = 0;

 int main(void)

 {

 Box Box1(3.3, 1.2, 1.5);

 Box Box2(8.5, 6.0, 2.0);

 cout << "Total objects: " << Box::objectCount
<< endl;

 return 0;

}

