
Advanced Programming

Inheritance (1)

Topics

• Base and Derived Classes

– Single Inheritance

–Declaration of derived classes
• Order of Constructor and Destructor Execution

–Inherited member accessibility

• Examples

Inheritance

• Inheritance is a method by which one class
acquires the properties (data and operations)
of another class

• Base Class (or superclass): the class being
inherited from

• Derived Class (or subclass): the class that
inherits

Why Inheritance?

• When a class is inherited from another class,
we can:
– Reuse the methods and data of the existing class

– Extend the existing class by adding new data and
new methods

– Modify the existing class by overloading its
methods with your own implementations

Example

• Assume a class named List is defined to store
an integer list. A new class named Set is
needed to store a set of integer values. Inherit
class Set from class List

Class List

class List
{
 int *data;
 public:
 List(int size=100);
 void Insert(int val);
 void Delete(int val);
 bool Contains(int val);
 ~List()
};

Class Set

class Set : public List

{

 int card;

 public:

 void Insert(int val);

 void Remove(int val);

 int NumMembers(){ return card;}

};

Inheritance and Accessibility

• A class inherits the behavior of another class
and enhances it in some way

• Inheritance does not mean the inheriting class
can have access to the private members of the
base class

Protected Class Members

• Derived classes cannot access the private data
of the base class

• Declaring methods and data of the base class
as protected (instead of private) allows
derived classes to access them

• Objects outside the class, however, cannot
access them (same as private)

Constructors and Destructors

• We cannot override a base class constructor
with a derived class constructor (rather, the
derived class constructor calls the base class
constructor first)

• If the base class constructor takes parameters,
they should be passed to it.

• The destructor of the derived class is called
before the destructor of the bas class

Example: Derive class 3D Point from
2D Point

class Point {
public:
 Point();
 Point(int xv, int yv);
 void SetX(int xv);
 void SetY(int yv);
private:
 int x;
 int y;
};

Example: Derive class 3D Point from
2D Point

class Point3D :public Point {

public:

 Point3D();

 Point3D(int xv, int yv, int zv);

 void SetZ(int zv);

private:

 int z;

};

Point3D::Point3D(int xv, int yv, int zv)

{

 SetX(xv);

 SetY(yv);

 SetZ(zv);

}

int main()

{

Point3D P;

P.SetX(100);

P.SetY(200);

P.SetZ(300);

return 0;

}

Overriding

• A function in the derived class with the same
function name will override the function’s
variables in the base class.

• You can still retrieve the overridden functions
variables by using the scope resolution
operator ”::”.

Overriding
#include <iostream.h>

#include <stdlib.h>

class A

{ int i;

public:

 A(){i = 5;};

 int get(){return i;};

};

class B: public A

{ int i;

public:

 B(){i = 10;};

 int get(){return i;};

};

void main()

{ B b;

 int x;

 cout << b.get()<<endl;

 cout << b.A::get()<<endl;

 cout << sizeof(x)<<endl;

 cout << sizeof(b)<<endl;

}

Types of Inheritance

• public

• private

• protected

Public Inheritance

• Public and protected members of the base
class become respectively public and
protected members of the derived class.

Private Inheritance

• Public and protected members of the base
class become private members of the derived
class.

Protected Inheritance

• Public and protected members of the base
class become protected members of the
derived class.

Why use the
constructor-initializer?

• Without it, the default constructor for
the base class would be called, which
would then have to be followed by calls
to access functions to set specific data
members.

Constructors in Derived Classes

• When an object of a derived class is created,
the constructor of the object must first
explicitly call the constructor of the base class.

• This is the same as constructor- initializer.

class Base

{ int n;

 public: Base(int x);

};

class Derived : public Base

{

 int t;

 public: Derived(int y) : Base(t) {t = y;}

};

Destructor Function

• Destructors are called implicitly starting with
the last derived class and moving in the
direction of the base class.

Compatibility Between Base and
Derived Classes

• An object of a derived class can be
treated as an object of its base class.

• The reverse is not true.

Nested Class Scope

• A public or protected base class member
that is hidden from the derived class can be
accessed using the scope resolution
operator ” ::”

• For example: base-class::member

• The “that” of base class can not access the
members of its derived classes.

