
Advanced Programming

Operator Overloading

Topics

• Dynamic memory allocation

• Copy constructor

• Overloading Operators

– Overloading assignment operator

– Overloading function call operator

– Overloading new

• Examples

• Bitwise operations

Overloading ()

• The function call operator () can be
overloaded for objects of class type.

• When () are overload, a new way to call a
function is not created. Rather, an operator
function is created that can be passed an
arbitrary number of parameters.

Example
 class Point
 {
 int x, y;
 public:
 Point() {x=0; y=0; }
 Point& operator()(int dx, int dy)
 {
 x += dx;
 y += dy;
 return *this;
 }
};
 void main()
 {
 Point pt;
 // Offset this coordinate x with 3 points
 // and coordinate y with 2 points.
 pt(3, 2);
 }

Overloading ()

• Overloaded () operator can be used to

– Access multidimensional array elements

– Initialize or erase all elements in a matrix

Dynamic Memory Allocation

• new is used for dynamic allocation of memory

• new can allocate an array of items

• If an array of items is created using new
operator, there should be constructor with no
parameter.

• delete operator is used to return the allocated
memory to the system

Overloading new

• The memory management operators can be
overloaded to customize allocation and de-allocation.

• new should return a pointer to a newly allocated
object on the heap, delete should de-allocate memory,
ignoring a NULL argument.

• To overload new, several rules must be followed:
– new must be a member function
– the return type must be void*
– the first explicit parameter must be a size_t value

• To overload delete there are also conditions:
– delete must be a member function
– the return type must be void

Overloading ->, *

• Reference to memory locations using pointers
can be diverted to user defined functions by
overloading ->, and * operators.

• class X

 {

 public:

 Y* operator->();

 }

Example

• Assume the records of a library are given in a raw
format where

– each field starts with % and a letter followed by the
value.

– The values of each field end with null character

– The order of the fields are not preserved

– Some fields may not be present in the record

• Write a book and a rawBook class and overload ->
operator to access the book data fields

Overloading =

• Must be a member function

• When a class contains references or pointers
to outside resources, the assignment operator
should be overloaded

• Assigning an object to itself should not cause
any problem

Example

• Assume a class is used to represent a student.
Define the class dynamically allocating the
space for name and address fields. Overload
the assignment operator.

Object Copying

• To copy an object either:

– Overload = operator

– Use a constructor which gets an object of the
same class as argument X::X(X& X). This
constructor is called copy constructor

Copy Constructor

• The copy constructor is a constructor which
creates an object by initializing it with an
object of the same class, which has been
created previously. The copy constructor is
also used to:

• Copy an object to pass it as an argument to a
function.

• Copy an object to return it from a function.

Copy Constructor

• Copy constructors are necessary when objects
include pointers.

• Without a copy constructor there can be
problems such as:

– Objects referring to the same locations

– Destructor function is called more than once

Example

• Define a class to represent a one-dimensional
integer vector. The vector is created
dynamically using the length argument by the
constructor function.

• Write a non-member function to display the
vector.

Function Pointers

• It is possible to store the address of a function
in a pointer.

– E.g. int (*MyFunction)(int&, int&);

– MyFunction = &swap;

• Function pointers are used as arguments to
functions to create different versions of it

Example

• Write a function named BinarySearch to
locate an item in an array. To compare
elements of the array use a pointer to the
compare function.

Example

• Persistent arrays

– Assume you are using an array in your program.
The array stores some data. You want to have the
same data loaded into the array when you run the
program next time.

Example

• Assume an array is created with an initial size.
However, if the index range is larger than the
array size, the array is enlarged to include the
given index. Define the class and overload
necessary operators

Bitwise Operations

• The smallest addressable unit in memory is
byte. However, it is possible to access and
modify bits.

• Bitwise operators are :
– & bitwise AND

– | bitwise OR

– ^ bitwise XOR

– ~ bitwise NOT

– >> shift right

– << shift left

Example

• Define a Byte class where each bit is
accessible through the [] operator.

Streams

• A stream is defined as a sequence of bytes

• We consider input and output as stream of
bytes being inserted or extracted from a
stream, respectively.

• Two main stream classes are:
– istream

– ostream

– iostream has been driven from both istream and
ostream

Streams

• cin, cout, and cerr are object instances from
istream and ostream

• >> and << operators have been overloaded for
input and output operations.

Overloading >>

• >> is overloaded using a global function

• ostream& operator>> (ostream&, classType)

File Streams

• Files are also treated as streams.

• ifstream, ofstream, and fstream are used for
file I/O

• Example: fstream f(“MyFile.txt”,
ios::out|ios::in)

