
Advanced Programming

Structs, Unions, Pointers

Topics

• Structs

• Unions

• Pointers

– Declaration

– Operations

• Pointers and Arrays

• Dynamic Allocation

Structs

• Structs are user defined types where:
– Has a name
– May have fields with different types
– Each field is referred to by its name

• struct name
 {
 type1 field1;
 tyep2 field2;
 }

Example

• Create a table where each row has the name,
surname, ID , and phone number of a student.

• Read data into table

• Read a phone number and find the
corresponding student

Unions

• User defined types with multiple fields

• Fields are accessed by name

• The difference with structs is that in unions
the fields overlap

Example

• The list of employees in a company contains:

– Name

– Surname

– Gender

– Responsibility

– If manager then office number

– If engineer then project code

Pointers

• Pointers are variables to store address of a
memory location.

• Each pointer has a type which shows the type
of the location referred to by the pointer.

• Syntax

– Type *pointerVariable;

Operation

• Operations on pointers

– Assignment (address of a variable)

• int v1, *pv1;

• pv1 = &v1;

– Access to the value of location

• int v1, v2, *pv1;

• v1 = 25;

• pv1 = &v1;

• v2 = *pv1 + 3;

Pointer Arithmetic

• The value of a pointer can be incremented to
refer to the next location

• The value of a pointer can be decremented to
refer to the previous location

Arrays and Pointers

• The name of an array is the pointer to the first
location in the array

• The following expressions are equivalent

– int A[10];

– A[0] = 5; *A=5;

– A[2] = 20; *(A+2)=20;

Example

• Read numbers into an array using pointers

• Read two strings, find the second one in the
first string and replace its characters with ‘*’

Dynamic Memory Allocation

• Memory can be allocated during run time using
malloc function

• Use free(void *) to return back the allocated
memory

• void *malloc(int bytesRequested)

• Example
– int *Loc;
– Loc = (int *)malloc(4*sizeof(int));
– (Loc+2) = 22; Loc[2]=22;

Pointer To Structs

• Pointers can be used with structs.

• To refer to the internal elements of a struct we
use -> operator

• Example:
– struct point

 { int x,y;} *p;

 p = (struct point *) malloc(sizeof (struct point));

 p->x=2;

 p->y=p->x;

Example

• Using arrays store polynomials

• Read two polynomials and add them into a
third polynomial

• Solve the problem using dynamic allocation

